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Abstract-The thermal stability of a diathermanous. thermally-expansive fluid. divided into parallel hori- 
Lontal layers by partially transparent barriers, and heated from below 1s considered. The effects of horizontal 
conduction within and radiative coupling between the Intermediate barriers as well as the ratios of individual 
fluid layer thicknesses on critical Rayleigh number are predicted using linear stability theory. The results 

of the analysis are confirmed experimentally for double and triple air layers separated by plastic sheets. 

INTRODUCTION 

To SUPPRESS convective heat loss from a flat plate 
solar collector one or more transparent covers may be 
interposed between the absorber and the environment. 
Whillier [l] considered the use of thin plastic sheets as 
multiple glazings for solar collectors. He used a one- 
fourth power law to approximate convective heat 
transfer across the air gaps. Hollands and Wright [2] 
repeated the analysis of Whillier [l] more rigorously, 
using a correlation reported by Hollands et al. [3] 
for convective heat transfer across single fluid layers 
enclosed between isothermal boundaries. Measure- 
ments made by Hollands and Wright [2] for heat 
transfer across an air layer divided in two by a 1 mm 
Teflon sheet demonstrated the shortcomings of this 
approach ; measured heat flux exceeded predictions 
by more than 20%. The difference was attributed to 
the fact that the Teflon sheet dividing the two air layers 
would not form an isothermal boundary. Edwards 
and Rhee [4] analysed the case of a flat plate collector 
with inner glazings of either plastic film or glass. They 
took into account the non-isothermality of the inner 
barrier by incorporating the linear stability analysis 
of Sparrow et ul. [5] for single layers with boundaries 
of finite conductivity. Gershuni and Zhukhovitskii [h] 
gave an approximate solution for the critical Rayleigh 
number of a fluid layer with outer isothermal bound- 
aries and divided in half by a horizontal barrier of 
C-Jr_ rl_:_,.-_“.. ..__I __-?J.._r:..:*.. II_&&__ .._,I , I,._. Llllllt: L1L,LKlKb> ii,,” L”IIuuuLI”LLy. < allv11 ill,” l-lcll- 
hard [7] analysed the same situation using the Galer- 
kin method but allowed the intermediate barrier to be 
located at any position between the outer boundaries. 
Fluid property temperature dependence and radiative 
coupling were neglected in the analysis. Under these 
conditions the most stable arrangement was shown to 
occur when the ratio of fluid layer thicknesses was 
equal to 1. 

Lienhard and Catton [S] calculated heat transfer 
across a double layer with a centrally located inter- 
mediate barrier applying power integral theory. They 
found it was possible to correlate their results with the 
dimensionless conduction ratio (K&,,)/(K,,(L, + LJ 
when the ratio a&,/(& + L,) is small. Thermal con- 
ductivities K, and Kb are for the fluid and the inter- 
mediate barrier, respectively. Thicknesses L,, Lz and 
L, are for the two fluid layers and the intermediate 
barrier, respectively, and a is the dimensionless per- 
turbation wavenumber. A comparison of their pre- 
dictions with the heat transfer measurements of Hol- 
lands and Wright [2] and Ulrich [9] showed good 
agreement. 

Lienhard [lo] calculated critical Rayleigh numbers 
for two, three and four fluid layer systems by extend- 
mg the analysis of Catton and Lienhard [7]. Hleber 
[ 1 l] demonstrated how a shooting algorithm could be 
applied to multi-layer stability problems, considerably 
simplifying the numerical solution. 

Richards and Edwards [12] showed the stabilizing 
effect of boundary radiation on the thermal stability 
of single and double fluid layer systems where the fluid 
is diathermanous. The analysis of the double layer 
system required the two layers to be of equal thickness 
but allowed the intermediate barrier to be partially 
transparent with arbitrary emissivity and reflectivity. 
Lienhard [ 131 also investigated the effect of boundary 
rarl;~t;nn nn the rln,,hlc= Irr.wr Uic treatment ~llnwwi lllUlUIl”ll “IL Lll” U”U”IU ‘YJ”‘. AllO CIVUIIII~IIL Ull”I.U.u 
fluid layers of unequal thickness, but was restricted to 
the case of an opaque intermediate barrier. 

The present work involves a more general analysis 
of the multi-layer stability problem with radiation, 
allowing both arbitrary fluid layer thickness ratios and 
partially transparent barriers. The situation con- 
sidered is that of n horizontal layers of diathermanous. 
thermally-expansive fluid, separated by (n- 1) par- 
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NOMENCLATURE 

u perturbation wavenumber 
B black body radiosity 
Bi Biot number 

D, =-derivative 

4 perturbation transfer factor 

9 gravitational acceleration 
Gr fl”,“L,.+-....ml.ZM. \>,as,,u1 LLULLLUCL 
il heat transfer coelhcrent 
H barrier or boundary to fluid layer 

conductance ratio 

F,, mean transfer factor 
k conductrvrty 
I* fluid layer thickness 
II number of fluid layers 
rliu Nusseh number 
Pf Prandtl number 

q heat flux 
RU Rayleigh number 

4 heat flux ratio 
S(a) shape factor attenuation factor 
T temperature 
t barrier or boundary thickness 
W(Z) -_-velocity component --dependence 
x horizontal coordinate 
2 vertical coordinate. 

Greek symbols 
a thermal diffusivity 

B volume coefficient of expansion 
(5 amplitude of radiosityiirradiation 

perturbation 

AT temperature difference 
i: emissivity 
O(Z) temperature perturbation Z- 

dependence 
i fluid-layer thickness ratio 

p dynamic viscosity 
:’ Lin,=mlt;r ,ri.Wna;t,, L\LllUl‘lUL,U I “‘~““‘L,, 
P reflectivity 
n Stefan-Boltzmann constant 
t transmissivity. 

Subscripts 
b outer boundary or mtermcdtate barrrer 
c conductive/convective 
cr critical 
f fluid 

individual fluid layer i 

L mean 
max maximum 
r radiative 
tot total system 
V spectral. 

Superscripts 
+ / - radiosity/irradiation 

mean quantity 
perturbation 

* dimensional quantity. 

tially transparent intermediate barriers with arbitrary 
emissivity, reflectivity and thermal conductivity. Criti- 
cal Rayleigh numbers are presented for the particular 
cases of two and three fluid layers. Experimental 
measurements of heat flux across double and triple air 
layers separated by plastic sheets are also reported and 
compared with the predictions of the linear stability 
analysis. 

THEORY 

A diathermanous. thermally-expansive fluid is div- 
ided into II horizontal layers of arbitrary thickness as 
shown in Fig. 1. If an adverse temperature gradient of 
sufficient magnitude is imposed by heating the bottom 
and cooling the top of the multi-layer system, then the 
enclosed fluid may become unstable to small dis- 
turbances in temperature and velocity. The stability 
of the system may be analysed by assuming small 
perturbations of temperature about the mean or 
quiescent base state temperature gradient. The per- 
turbed temperature profile in the ith layer is assumed 
to take the form : 

where 

T(s,,z,) = hz,) + T’(x,,z,), (1) 

T’(.u,, 2,) = (AT,)H(z,) cos (a,.~,). (2) 

and where X, and 2, are the horizontal and vertical 
Cartesian coordinates, non-dimensionalized by the ith 
fluid layer thickness, L,. The linearized time-inde- 
pendent perturbation equations governing these 

FIG. 1. The n-layer system (II = 3). 
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infinitesimal disturbances within each individual fluid 
iayer may then be written as ji4j : 

(0; -af)O(z,) = -Iv, W(z,), (3) 

(02 -af)‘W(z,) = a,‘Gr,B(z,), (4) 

such that: 

(D;-u’)~~(z,) = -a’Ra,tl(z,). (5) 

Here O(Z,) and I+‘(:,) are the temperature and the :- 
velocity component perturbations non-dimen- 
sionalized by AT, and v,/L,, respectively. Operator D, 
is the z-derivative, and a, is the disturbance wave- 
number, both non-dimensionalized with respect to L,. 
The subscript i identifies the individual fluid layer 
within the multi-layer stack. 

Two sets of dimensionless numbers are defined. The 
individual fluid layer Rayleigh number, Grashof num- 
ber, and Prandtl number in equations (4)-(6) are 
defined to be : 

Ru, = Gr,Pr, Gr, =gb,AT,L:/vf Pr, = ~#,/a,. 

(6) 

where AT, is the temperature drop across the ith fluid 
layer, and /?,, TY,, and vi are evaluated at the mean 
temperature of the ith layer. Total Rayleigh, Grashof, 
rrnA Prgndtl nmnhwr 2t-p alcn rbfin,=~ U&l.. 1 lUll..Cl .IL.III”“.” WI_ YlU” UII.I._.. 

Ruto, = GrtotPrtot Grtot = g/lATL’/v’ Prt,, = V/LY, 

(7) 

where AT is the total temperature drop across all 
layers and p, c(, and v are evaluated at the mean tem- 
perature of the entire stack. 

The boundary conditions on velocity for each layer 
are zero velocity and (from continuity) zero first 
derivative of W: 

W(z,) = 0 I, = 0, 1 (8) 

n w1 = 0 u_.rr ii z, = 0, !. (9) 

The thermal boundary conditions imposed are con- 
tinuity in temperature across each intermediate barrier 
(assuming negligible thermal resistance across the bar- 
riers), and continuity in heat flux at every boundary. 
The first condition, continuity in temperature, is : 

H(z, = 1) = B(z,,+,, = 0). (10) 

The second condition, continuity in heat flux, is 
developed by applying heat flux balances at the two 
outer boundaries, and at each intermediate barrier. 
Both intermediate barriers and outer boundaries are 
t,n,+,,l I.., ;*.,,.I,;..,7 +L.Q fi, n..l,,,..,;mot;,,n ‘.,, +L..+ IICXICCZU vy III”“I\IIIg LllC 1111 a~~L”nrlUar,“L‘, J” Lll‘Il 
horizontal conduction within each barrier or bound- 
ary is accounted for. Equation (1) is then substituted 
into the total heat balances on the fin-like boundaries 
and barriers. Subtracting out similarly developed 
mean or quiescent-base-state heat balances from the 
total heat balances gives temperature perturbation 
boundary conditions at the upper and lower outer 
boundaries, and at the ith intermediate barrier : 

-h,T’(z: = 0) = -Kf,, gi 

ST’ 
-Kf.tp _* , = -K;:,,+,,% (‘Z -I i> 

The starred symbols, x* and z*, are the horizontal 
and vertical Cartesian coordinates in dimensional 
form. The symbol Kf,, designates the ith fluid layer 
conductivity, while K,,, and t, are the conductivity and 
thickness of ith boundary or barrier. The per- 
turbations to the mean radiative flux at each bound- 
ary, designated q:,,, can be expressed in terms of the 
perturbations to the mean black-body radiosity of 
each surface and the transfer factors from surface to 
surface. The spectral black body radiosity from the 
ith surface can be expressed as : 

B,,, = B,.[i’(z, = O)]+T’(x.O)g , (14) 
7=m,=o, 

in order to make use of the assumed form of the 
small perturbations in temperature at each boundary 
[equation (2)]. Richards and Edwards [12] previously 
showed that a radiosity in the form of a mean value 
plus a sinusoidally varying perturbation from bound- 
ary i, 

+iv\ -ii+ I;i qY.z\n, - VI’., ,.nc //Iv*\ 
I YV~,""O\U,~ ,. (i5) 

will result in an irradiation of a similar form on the 
facing boundary, ,j, 

q\,(x) = q:{ + S(u)&, cos (ax*). (16) 

The function S(u) is the spatial attenuation factor and 
was given in Fig. 2 of Richards and Edwards [12]. In 
that paper the spatial attenuation factor was shown 
to act like a geometric transmissivity, attenuating per- 
turbation radiation as it crossed a fluid layer. 

The transfer factors for perturbation radiation from 
one surface to another may be determined algebraic- 
.,I,., ..r;nrr tha r,~~~~~;t,,~;rr,~~~ot~~~ ‘x,,..~~t;n~~ -!-he ally Uz.111~ LI1b luulvalry IIIauIcII1vII b~ucLrl”Lm. 
case of a single layer (to which the situation of multiple 
layers reduces when all barriers are opaque to thermal 
radiation) and the case of twin symmetric layers with 
a specularly reflecting and transmitting intermediate 
barrier have already been dealt with. The more general 
case of n arbitrary layers with (n - 1) semi-transparent 
intermediate barriers and two outer boundaries is con- 
sidered here. 
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For an n-layer stack the algebra leads to : 

where the F,,, are the perturbation transfer factors 
from surface i to surface,j. For convenience. both sides 
of each intermediate barrier are taken to be part of 
the same surface. Integration of spectral values over 
all photon wavenumbers to arrive at total values is 
implied by the disappearance of the subscript I in 
equation (17). The new transfer factor introduced 
here, F,, represents the fraction of perturbation radi- 
ation emitted by the ith surface and not absorbed 
by any surface. This radiation is ‘lost’ due to the 
geometrical averaging or attenuation accounted for 
by S(u). It follows then that a perturbation radiant 
heat balance on any surface imust lead to the identity : 

I/ 

i:, = F, + c F,.,. (18) 
i--o 

Substituting equation (14) into (17). making USC‘ of 
(I@, yields: 

q:., = a&, o T’(-: = 0) - F,.<,h,., T’(--T = 0) 

- i F”,,h,.,T’(z;= L,), (19) 
,= I 

for the net perturbation radiant heat flux from the 
lower boundary in terms of the temperature per- 
turbations, and : 

4.f = i:,h,,,T’($= L,) - F,,,h,,, T’($ = 0) 

- #i, F,,,h, ,T’($= L,). (20) 

for all other surfaces. The radiation heat transfer 
coefficients, h, o and h, , , are defined to be : 

/I,., = 4oTJ(=T = 0) h,,, = 4oi”(::= L,). (21) 

Introducing equations (19) and (20) into (11) (13), 
and non-dimensionalizing gives the final form of the 
thermai boundary conditions for the upper. iower and 
intermediate boundaries as : 

D.1) /., ,) = (Bi, ,, +rliH,,+s,,Bi, ,,)W(z, = 0) 

- D.f(~ I = (Bi,,,+rr~H,,+c.,Bi,,,)(~(_,, = I) 

~F,,.,Bi,,R,.,,U(-, = O)- 2 C’,, $4 ,R,,,Q:, = 1) 
/= 1 

(23) 

= (,~;ff,+c,Bi,,)O(z, = l)pb;,,Bi,,,R, ,H(z, = 0) 

II 

- c fi-,,,&,,R,,,% = I), (24) 
,= i 

where convective and radiative Biot numbers are 
defined to be : 

k L, Bj,,, = -i& Bj,, =‘F_ (25) 
i. 1 i.r 

The quantities H and R,, are the barrier to fluid-layer 
conductance ratio and the individual heat flux ratio : 

The barrier to fluid-layer conductance ratio. H. par- 
ameterizes horizontal conduction in the intermediate 
barriers and outer hondarim The hmt flnv ratin R Ill..-_-_.._Y. _--- -_--_ ___‘. ___-_, -.,,,, 

which characterizes conduction heat tranfer across 
individual fluid layers. varies from unity because of 
radiative interactions. 

METHOD OF SOLUTION 

The solution of the multi-layer linear stability prob- 
lem posed in equations (3)-(5), @-(lo) and (22)) 
(24) requires the specification of the base, quiescent 
state of the multi-layer stack. To establish the tem- 
peratures of each of the intermediate boundaries (and 
the resulting temperature gradients across each indi- 
vidual fluid layer) an iterative relaxation scheme is 
used. The temperature of the ith intermediate bound- 
ary is found by applying heat balances on each of the 
ith intermediate barriers, taking into account con- 
duction through fluid layers and surface-to-surface 
radiation between barriers. 

Perturbation transfer factors F;, are found using 
the plating algorithm developed by Edwards [15]. The 
stack of fluid layers is considered as an enclosure, with 
the outer boundaries and the intermediate barriers 
acting as the surfaces of the enclosure. All surfaces 
are taken to be diffuse emitters and reflectors. Cal- 
cuiation of the transfer factors for the stack requires 
a minor modification to the recursion relations (IO)) 
(I 3) given in Edwards [ 151 because the transmissivity 
of the intermediate barriers and the action of the spa- 
ti>l attenuation factor must be taken into account. In 
the present application the four cases become : 

F,*, = FT.,+ i ~ 
Pi 

& (l-r,)’ 
F,., FL.,. (27a) 

Cast 2. (i # k. j = k) 

(27b) 

Case 3. (i = k. j # k) 
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(27~) 

Case 4. (i = k, ,j = k) 

W) 

where 

WeI 

The starting values of F,,, chosen for the recursion 
relations (27~1) (Ye) will bc the transfer factors for 
a stack with opaque outer boundaries, intermediate 
barriers with the given transmissivity, no reflectivity, 
and the corresponding emissivity (a = 1- 7) and which 
also include the effect of S(a). Under these assump- 
+:,.-- +c- +..“-“+-_... C__&_..” ̂_^ ^,.^ :I.. F-..-..1..&_1. LI”IIS UK LIdllS1CI lilLL”ll d‘c- casuy I”I‘IIU‘klL~” 

0-i) 
4, = ~+(a,.,) n 7k. 6’8) 

r=ci+i, 

where a,,, is the perturbation wavenumber non-dimen- 
sionalized with respect to the length L,, between sur- 
faces i and j : 

L,, = 2 Li. (29) 
k=(r+l) 

Given the intra-stack transfer factors and the tem- 
.___._...__ -r r,._ ~&_ peratures or one mtermediate barriers for the muiti- 
layer system’s base state, the linear stability problem 
may be solved. The shooting method of Hieber [ 1 l] is 
employed. For each of the IZ layers in the stack, equa- 
tion (5) is applied. The sixth-order ordinary differ- 
ential equation is broken down into a system of six 
first-order equations, the solution of which is ex- 
pressed as a linear combination of six independent 
functions. Six additional boundary conditions are im- 
posed at Z, = 0 in each layer in order to recast the orig- 
inal boundary-condition problem as an initial-condi- 
tion problem. The system of equations is then integra- 
ted across each layer from Z, = 0 to 1 using a Runge 
Kutta routine and the boundary conditions (8)-(10) 
and (22)-(24) imposed. The result is a system of 4n 
equations in 4n + 1 unknowns, where the (n+ I)th 
unknown is Ra,,,. The Rayleigh number of neutral 
stability for a given perturbation wavenumber will be 
the value which forces the determinant of the system 
of 4n equations to zero. The critical Rayleigh number 
is the minimum of the curve of Rayleigh number of 
neutral stability vs perturbation wavenumber. 

Hieber [l I] was able to solve the stability problem 
for multi-layer systems by finding the determinant 01 
a 4 x 4 matrix because he neglected radiation. In the 
-r..,.nll”t "-..l;nnt:?.., .e.-..;raA ~JL~;“~LLL appu~a~~ou a 4ii X 4ii iEZtiiX iS ~r;qur~r;u, 

because surface-to-surface radiation causes bound- 
aries not adjacent to one another to become coupled 
through the heat-flux boundary conditions (22)~ (24). 

EXPERIMENT 

Heat transfer measurements were made with a test 
cell which served to contain horizontal layers of air 
while heating the layers from below and cooling them 
from above. The lower boundary of the test cell is 
an electrically heated aluminum plate, and the upper 
boundary is a water-cooled brass plate, both 45 x 22 
cm. Temperatures of the aluminum hot plate and the 
brass cold plate are monitored with type E thermo- 
couples. Phenolic spacers and paperboard wall5 
placed around the periphery of the test cell make up its 
sidewalls. First-surface aluminized mylar completely 
covers the sidewalls of the test cell so that, with the 
barbershop mirror etfect. it behaves radiativrly as il 
it were infinite in the horizontal plane. The vertical 
thickness of each air layer is determined by the phen- 
olic spacers. Stacked atop one another, the spacers 
hold plastic sheets or films which divide the air gap 
into individual horizontal layers. The entire test cell is 
enclosed in a pressure vessel which can be evacuated 
down to 1 Torr or pressurized up to 1500 Torr absol- 
ute, allowing precise control of the pressure. 

Heat flux across the air layers is measured using a 
guard-heated calorimeter. The calorimeter, 40 cm long 
and 10 cm wide, is mounted into a recess machined 
into the front face of the aluminum hot plate. Fitting 
flush with the face of the hot plate, the calorimeter is 
made up of a brass back plate, a cork inner layer, an 
inconel-foil resistive heating element, and a copper 
face sheet. The brass back plate is in good thermal 
contact with_ th_e ahum_mmn h_ot nlatp while the rnnner y.“.-, . ..--._ ..&_ v”yyw. 

face sheet forms the central part of the test cell’s lower 
heated boundary. An eight-junction thermopile (type 
E) bridging the cork inner layer measures the tem- 
perature difference between the copper face plate and 
the brass base plate of the calorimeter. When the sig- 
nal from this thermopile is nulled, all electrical power 
dissipated as heat in the calorimeter’s resistance foil 
heater is transferred out the front of the calorimeter’s 
copper face sheet into the test cell. In this way, mea- 
suring the electrical dissipation in the calorimeter 
heater gives a direct measure of heat transfer across 
the enclosed air layers. 

An experimental run begins by adjusting the air 
pressure in the test cell until the air-layer system is 
below its critical Rayleigh number. Rayleigh number 
is swept from low to high by increasing the test cell 
air pressure. Heat-flux data are taken at incrementally 
higher pressures until the particular air-layer system’s 
Nusselt number increases significantly above the 
quiescent. base-state value for the system. During an 
experimental run, the cold- and hot-plate tem- 
peratures remain constant. Consequently, the con- 
tribution of radiative heat transfer to the total heat 
transfer across the air layers remains constant even as 
D- :..,..,,,,, 1\u I‘lLleabes. 

Heat transfer measurements were made on nine test 
cases, including single, double, and triple air layers. 
Those cases are listed in Table 1. The thermophysical 
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Table 1. Test cases 

Case Number 
number of layers Type of barrier 

L, L, LX AT,,, TM. tot 
(mm) (mm) (mm) (K) (K) 

1 
2 
3 
4 

5(a-d) 
6 
I 
8 
9 

1 21.9 -. 
2 Phenolic 13.2 12.4 24.9 304.9 
2 Phenolic (aluminized) 13.2 12.4 25.1 311.0 
2 Mylar 13.2 12.5 21.4 308.2 
2 Teflon 13.3 12.5 t $ 
2 Polyethylene 9.3 12.5 20.8 307.6 
3 Polyethylene 9.4 12.7 8.2 29.8 313.1 
3 Mylar 9.4 9.3 9.0 19.9 306.0 
3 Phenolic 9.4 9.3 9.0 21.5 307.3 

t(5a) 15.5 K; (5b) 21.1 K; (5~) 24.2 K; (5d) 27.8 K. 
:(5a) 303.6 K: (5b) 306.6 K; (5~) 309.8 K: (5d) 311.4 K 

properties of the plastic sheets used as intermediate 
barriers in the nine test cases are given in Table 2. 

Properties of air used to calculate the experimental 
Nusselt and Rayleigh numbers are taken from Var- 
gaftik [ 171. Air properties used for the Nusselt number 
and the total Rayleigh number are evaluated at the 
mean temperature of the hot and cold plates. The 
temperatures of the plastic sheets serving as inter- 
mediate barriers in the multi-layer systems were not 
measured; thus the air properties used to calculate 
Nusselt and Rayleigh numbers for an individual layer 
had to be evaluated at the predicted mean temperature 
of that layer. 

A detailed error analysis of the experiment is given 
in Richards [16]. The uncertainty of the measured 
Nllrselt number is estimated to he +3X The fencer- . .-II___ __-___-__ _I -I _____ -_-- _- -- _-, “. _ ___ -___ __ 

tainty in measured total Rayleigh number is estimated 
to be +3%. 

RESULTS 

Heat-tram@ measurements 
Figure 2 shows plots of heat-transfer measurements 

around the onset of instability for four test cases: a 
single layer (test-case 1), a double layer with a phe- 
nolic intermediate barrier (test-case 2), a double layer 
with a polyethylene intermediate barrier (test-case 6), 
and a triple layer with two Mylar intermediate barriers 
(test-case 8). The data shown are typicai of the 
measurements made for each of the nine test cases 
run. The figure shows plots of Nusselt number as a 

function of total system Rayleigh number. Solid lines 
through the data in each figure represent the average 
Nusselt number of the low-Rayleigh (subcritical) data 
and a least squares fit to the high-Rayleigh-number 
(supercritical) data. The intersection of the two lines 
is taken as the location of the critical Rgyleigh 
number. The onset of instability is unmistakable in 
the plots. 

In the test cases shown, the average subcritical Nus- 
selt number is greater than 1. The difference between 
the measured subcritical Nusselt numbers and unity 
can be attributed to radiative transfer across the air 
layers. As pointed out earlier, the contribution of radi- 
ative heat transfer to the total heat transfer across the 
air layers was constant during each experiment. For 
this reason for data in the vicinitv of Rn.-~ the cnn- _____ _--I-__) _-_ --_- ___ ____ ._______, -_ ____c,) ____ _-__ 

tribution of radiation heat transfer can be subtracted 
out of the overall heat transfer, to good approxi- 
mation, simply by translating the experimental data 
down until the average of the subcritical measure- 
ments falls on the line Nu = 1. 

The repeatability of the heat-transfer measurements 
can be gauged by an inspection of data for test-case 2 
(Fig. 2b). That plot shows data taken in two separate 
experimental runs with data from the first run plotted 
as open squares and data from the second run as open 
circles. The scatter in the measurements is small, in 
the order of 2--3%. This level of repeatability is typical 
of the experimentai runs and agrees weii with the 
uncertainty analysis of Richards [ 161. 

Table 3 lists critical Rayleigh numbers and average 

Table 2. Thermophysical propertIes of plastic sheets and films 

Thickness k H 
Plastic sheer or film Ulm) (WmK ‘1 E P T double layert 

Phenolic 760 0.50 0.90 0.10 0.00 1.2 
Phenolic (aluminized) 960 0.44: 0.04 0.96 0.00 1.4 
Mylar 25.0 0.16 0.57 0.14 0.29 0.013 
Teflon 25.0 0.24 0.38 0.08 0.54 0.020 
Polyethylene 13.0 0.33 0.08 0.10 0.82 0.013 

tValues for H listed are for double-layer test cases only. 
f Conductivity is a cross-sectional-area weighted average of phenolic and aluminized mylar 

conductivities. 
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,,5_ (a) Single layer 
(Test case 1) 

Cd) Triple layer, mylar 

FIG. 2. Heat transfer data for : (a) single layer (test-case I) ; (b) double layer with phenolic intermediate 
barrier (test-case 2) ; (c) double layer with polyethylene intermediate barrier (test-case 6) ; (d) triple layer 

with Mylar intermediate barriers (test-case 8). 

subcritical Nusselt numbers determined for each of 
rL_ -:__ &^_A ̂̂ ^^^ .._:-.. ._,_A_ _:-_:I__ A- &L___ _:_._- UK Ill‘lt: LGYL LXSB, Ublllg Pl”Lb YlIllllal LO L11”St: g,lWX, 
in Fig. 2. 

Linear stability predictions 
Critical Rayleigh numbers predicted by the linear 

stability analysis and subcritical Nusselt numbers pre- 
dicted by the iterative relaxation scheme are listed in 
Table 3 along side the experimental values. The critical 
Rayleigh numbers and subcritical Nusselt numbers 

given were calculated for each test case based on the 
:-C_--__r:_- _:_._- :- T..LI__ t _-.I ? l-L_ -_:.:__I n-.. Illl”llllall”~1 g,vtX 111 I aDlCb 1 an” L. I nt: CIlllCal Kay- 

leigh numbers and subcritical Nusselt numbers pre- 
dicted from theory for test-cases 1, 2, 6 and 8 are also 
shown by vertical and horizontal dashed lines in Fig. 
2. 

Figures 3, 4, and 5 illustrate trends in the stability 
of multi-layer fluid systems predicted by the linear 
stability theory. The figures show the behavior of indi- 
vidual-layer and total-system critical Rayleigh num- 

Table 3. Comparison of theory and experiment 

%ubcritica! Nusse!t n??mber rritic~l Ravlrioh n,nmhc=r Y In-’ ___.__I. -.-,.-. D” .._. 1.1-1 ,. I” 

Case Experiment Theory % Error Experiment Theory? O/u Error Theory: % Dlfferenceg 

2 
3 
4 
5a 
5b 
5c 
5d 
6 
I 
8 
9 

1.11 1.10 
1.11 1.11 
I .05 1.06 
1.09 1.11 
1.08 1.11 
1.09 1.11 
1.11 1.11 
1.10 1.12 
1.07 1.10 
1.16 1.21 
1.30 1.33 
1.34 1.37 

-I___ 
-1 
<1 
+I 
+2 
f3 
+2 
<l 
f2 
+3 
+4 
+2 
+2 

1.71 1.708 
26.1 25.5 
25.9 25.0 
23.9 23.3 
23.4 22.5 
22.6 22.1 
23.8 22.8 
23.2 22.8 
13.8 12.8 
49.2 48.5 

104 100 
104 104 

<l 1.708 
2 25.0 

-4 25.0 
-2 20.8 
-4 20.7 
tl 20.9 
-4 20.9 
-2 20.9 
-8 12.6 
-2 46.9 
-3 94.4 
<l 104 

0 
-2 
<l 
-11 
._ 8 
-8 

-8 
-8 
-2 
-3 
-6 
<l 

t Linear stability theory including radiation. 
1: Linear stability theory neglecting radiation. 
§Per cent difference between theory including radiation and theory neglecting radiation. 
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FIG. 3. Predicted total-system and individual-layer critical 
Rayleigh numbers vs total-system temperature difference for 
a double-air-layer system with Teflon intermediate barrier. 

along with experimental data from test case 5. 

, 
L,( L;, .21 

Frc,. 4. Predtcted total-system and Individual-layer cntical 
Rayleigh numbers vs fluid-layer thickness ratio. i.. for a dou- 
ble-air-layer system with polyethylene intermediate barrter, 
along with experimental datum from test case 6 (i = 0.59). 

FK. 5. Predicted total-system and mdividual-layer crittcal 
Rayletgh numbers vs fluid-layer thickness ratio. 2. with 
L, L, = 0.96, for a triple-air-layer system wtth Mylar Inter- 
medtate barriers. along with experimental datum from test 

case 8 (i = 0.09). 

bers vs total-system temperature difference and a 
fluid-layer thickness ratio for double and triple air- 
layer systems. 

To understand each of these figures, one might 
think of a multi-layer system with set fluid-layer thick- 
nesses, and a given mean temperature and imposed 
temperature amerence. Starting at a very iow vaiue, 
the pressure in the multi-layer system is gradually 
increased. The pressure and consequently the indi- 
vidual-layer and total-system Rayieigh numbers 
increase until the multi-layer system becomes unstable 
to infinitesimal disturbances. The individual-layer 
Rayleigh numbers and the total-system Rayleigh 
number at the onset nf instability are the critical 

Rayleigh values shown in the figures. (This is exactly 
the procedure used in the experimental runs.) Figure 
3 was then plotted by varying the imposed system 
temperature difference and Figs. 4 and 5 by varying 
the fluid-layer thickness ratio. 

The first of these plots, Fig. 3, shows the individual- 
layer (solid and dashed lines) and total-system (dash- 
dotted line) critical Rayleigh numbers as functions of 
the total temperature difference for a double-air-layer 
system with a Teflon intermediate barrier. Figure 3 
was plotted by increasing the temperature of the hot 
boundary while correspondingly decreasing the tem- 
perature of the cold boundary of the system so that 
the mean-system temperature remained constant at 
TM = 307 K. The characteristics of the double-layer 
system used to produce Fig. 3 correspond to test-case 
5 (see Table 1). Experimental data from test-case 5 
are indicated -with open circies on the piot, 

In Fig. 4, individual layer (solid and dashed lines) 
and total-system (dash-dotted line) critical Rayleigh 
numbers for a double-layer system with a polyethylene 
inner barrier are plotted as functions of the fluid-layer 
thickness ratio, 1 = (L$ - Lf)/LA,, (where L,,, is the 
larger of L, and LJ. The plot represents the system 
stability while the placement of the intermediate bar- 
rier is shifted from a position at the upper boundary, 
2 = - 1, through the middle of the total gap, iL = 0, 
and down to the lower boundary, i. = + 1. The total- 
system gap width, mean temperature, and tem- 
perature difference chosen for the calculations were 
taken from the values given in Table 1 for test-case 6. 
A single datum from test-case 6 is shown with an open 
circle on the figure. 

Figure 5 shows individual-layer (solid, dashed. and 
dotted lines) and total-system (dash-dotted lines) criti- 
cal Rayleigh numbers vs the individual thickness ratio 
i. = (L; - L:)iLA.,, (where L,,,, denotes the larger of 
L, and L,) for the triple-layer system with Mylar inter- 
mediate barriers. Critical Rayleigh numbers were cal- 
culated for a range of the fluid-layer thickness ratio. 
i., by starting with the two mylar intermediate barriers 
next to one another near the center of the stack 
I: _ I\ . . ..A +I.,.. ..l.;c+;..” ,I.,- ,..t...,.J . . ..t.. +I.,., I’. = - 1, a,,LJ LUG11 s11111111g LllClll “ULWalU Ulllll r,,ry 
were adjacent to the outer boundaries (2 = + 1). The 
ratio of thicknesses of the outer layers was held con- 
stant at LJL, = 0.96. The total-system gap width. 
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mean temperature, and temperature difference chosen 
for the calculations were taken from the values given 
in Table 1 for test-case 8. One datum from test-case 8 
is indicated on the figure with an open circle. 

DISCUSSION 

Comparison oJ’ theory and experiment 
Table 3 shows the comparison between theoretical 

predictions and experimental values of both critical 
Rayleigh number and subcritical Nusselt number. In 
every case the linear theory is seen to be in close 
agreement with the experimental measurements. 

The first test case. a single layer with isothermal 
boundaries, was included in the experimental program 
to qualify the apparatus. The measured value of 
Rat, = 1710 is in excellent agreement with the well- 
known theoretical value of Rat, = 1708. In addition, 
the base-state heat-flux measurement is within 1% of 
that predicted from first principles. Both comparisons 
demonstrate the accuracy of the apparatus. 

The agreement between measured and predicted 
critical Rayleigh numbers for the multi-layer systems 
is also excellent. In all of the multi-layer test cases 
listed in Table 3, except test-case 6, the linear theory 
predicts the results of the experimental runs within 
4%. In test-case 6, the discrepancy between exper- 
iment and analysis is 8%. It is interesting to note that 
for all but one run, case 5b, measured critical Rayleigh 
numbers are slightly higher than the linear theory 
predicts. 

In all cases, the predicted base-state heat flux is 
within 4% of the measured heat flux. Once again a 
trend is evident. For all but one case, test-case 1, the 
measured base-state heat fluxes are equal to or slightly 
less than the predicted heat fluxes. 

Stabilizing ej’kcts qfradiation and conduction 
The stabilizing effect of radiative coupling to the 

intermediate barriers can be seen by reference to Table 
3. The critical Rayleigh number predicted by a linear 
stability analysis which neglects boundary radiation 
is shown to the right of the prediction including radi- 
ation, as well as the per cent difference between the 
two predictions. 

The addition of radiation is seen to increase the 
stability of all of the multi-layer test cases. However, 
the increase in critical Rayleigh number due to radi- 
ation is greatest for multi-layer systems with thin inter- 
mediate barriers of low conductivity (i.e. low values 
of H) and high emissivity. For example, in test-case 
4, ignoring radiative coupling to the relatively high- 
emissivity, low H value, mylar intermediate barrier 
results in a value of critical Rayleigh number 11% 
lower than the more complete theory. 

In multi-layer systems with high H, horizontal con- 
duction dominates over radiative transfer as a sta- 
bilizing mechanism. Consider test-case 2 in which a 
double layer is divided by a phenolic intermediate 
barrier (H = 1.2, c: = 0.9). and test-case 3 in which a 

double layer is divided by a phenolic intermediate 
barrier covered with first-surface aluminized mylar 

(H = 1.4, E = 0.035). The reduction in radiative coup- 
ling to the phenolic inner barrier due to the low- 
emissivity aluminized coating does reduce the double- 
layer’s critical Rayleigh number. However, the change 
in critical Rayleigh number is small; the decrease is 
only about 2% for the theoretical numbers and 1% 
for the experimental numbers. 

Comparing test-cases 2 and 3 with cases 4 and 5 
shows the increase in multi-layer system stability 
associated with an increase in horizontal conduction 
in the intermediate barriers. Going from the double- 
layer systems with Mylar and Teflon inner barriers 
(cases 4 and 5) to the double-layer system with the 
phenolic inner barrier (cases 2 and 3) causes H to 
increase by a factor of about 100, and raises the mea- 
sured system critical Rayleigh number from 

Ra,,,,,, = 2.39 x lo4 for the Mylar, and 
2.25 x lo4 < Ra,,,,,, < 2.33 x lo4 for the Teflon, to 

Ra,,, tOt = 2.61 x 104, for the phenolic. The increase in 
critical Rayleigh number is a bit larger than 10%. 
Raising H further by replacing the phenolic barrier 
with an essentially isothermal sheet of copper (H + 
,m) would increase the system critical Rayleigh num- 

ber only another 5%, to the theoretical maximum 
value of Ra,,.,,, = 2.73 x 104. 

Cross-over of individual-layer critical Rayleigh num- 
bers 

Inspection of Figs. 3,4, and 5 reveals that the critical 
Rayleigh numbers for individual layers in a multi- 
layer system are generally not equal. For example, in 
Fig. 3 the individual-layer critical Rayleigh number 
for layer 1 is greater than that for layer 2 for total- 
system temperature differences below 25 K and is less 
for system temperature differences above 25 K. Only 
when the individual-layer critical Rayleigh numbers 
‘cross-over’ at AT,,, = 25 K is Ra,,,, = Ra,,,?. The 
location of the cross-over of individual-layer critical 
Rayleigh numbers is determined by the individual 
fluid-layer thicknesses, the temperature dependence of 
fluid thermophysical properties, and the temperature 
dependence imposed across each individual fluid 
layer. 

Individual-layer Rayleigh number was previously 
defined in equation (6) in which all fluid properties 
were to be evaluated at the individual-layer mean tem- 
perature, TV ,. For the air-filled systems of Figs. 3. 
4, and 5. individual-layer Rayleigh number, Ra,, will 
increase as AT, and L, increase and as T,, decreases. 
The last assertion follows from the fact that both 
the conductivity and the dynamic viscosity of air are 
proportional to absolute temperature to the three 
fourths power (K, p cc T’ “) while both the volume 
coefficient of expansion and density of air are inversely 
proportional to temperature (p, fl nc T ‘). Therefore. 
since the Prandtl number of air is a weak function of 
temperature, the fluid-property dependence on mean- 
layer temperature will be roughly : 
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,Ll,/vf cr T,; ‘. (30) 

It follows that in a multi-layer system of equal-thick- 
ness individual layers the cooler, upper air layers will 
be characterized by larger Rayleigh numbers than the 
hotter, lower air layers. 

Radiative heat transfer will also cause the indi- 
vidual-layer Rayleigh numbers of equal-thickness lay- 
ers in a multi-layer system to become unequal. In the 
case of a multi-layer system where all surfaces are of 
equal emissivity, the non-linear nature of radiative 
coupling between outer boundaries and inner barriers 
will act to shift the temperature of the inner barriers 
toward the hottest boundary in the multi-layer system. 
In a multi-layer system with surfaces of markedly 
different emissivities, the temperatures of inner bar- 
riers will tend to shift toward the temperatures of the 
highest emissivity surfaces. In both cases, shifts in 
intermediate barrier temperatures will cause indi- 
vidual-layer Rayleigh numbers to decrease in those 
layers where temperature differences decrease and 
increase where the temperature differences increase. 
For the case of multi-layer systems with equal-emiss- 
ivity surfaces, thermal radiation will cause an effect 
similar to that of property temperature dependence, 
increasing the individual-layer Rayleigh numbers of 
the cooler, upper air layers over the hotter, lower 
layers. In general, the effects of both radiative heat 
transfer and fluid-property temperature dependence 
will grow as the total-system temperature difference 
increases. 

Figures 3,4 and 5 exemplify these points. The dou- 
ble air layer of Fig. 3 consists of two unequal-thickness 
individual layers (L, > L,). This system would always 
have Ra,,,, > Ra,,,z if property temperature depen- 
dence and thermal radiation were ignored. Account- 
ing for these efYects causes Ru,,,~ to rise and Ra,,,, to 
fall as the total-system temperature difference 
increases. The cross-over in individual critical Ray- 
leigh numbers occurs when : 

Figure 3 shows that this condition is met at AT,,, = 
25 K. 

Figure 4 demonstrates similar behavior. The indi- 
vidual-layer critical Rayleigh numbers for this double- 
layer system are only equal when layer 1 is thicker 
than layer 2 (n = -0.12). When the two layers are 
of equal thickness, thermal radiation and property 
temperature dependence force the critical Rayleigh 
number of the cooler, upper layer to be significantly 
greater than the hotter, lower layer. 

In the triple-layer system of Fig. 5, the cross-over 
of individual-layer critical Rayleigh numbers occurs 
when the inner air layer, layer 2, is larger than either 
of the outer air layers, layers 1 and 3 (L, > L, 2 L, 
or 1 = 0.54). The inclusion of low-emissivity outer 
boundaries and high-emissivity inner barriers in the 
triple-layer system is responsible. Weak radiative 

coupling to the low-emissivity outer boundaries and 
strong radiative coupling between the two high-emiss- 
ivity inner barriers causes the temperature difference 
across the inner layer to be smaller than the tem- 
perature differences across the outer layers. Conse- 
quently, individual-layer Rayleigh numbers can only 
be equal when the thickness of the inner layer is 
increased to compensate for the reduced temperature 
difference in accordance with equation (30). 

Condition cfmaximum system stability 
For the double-air-layer cases shown in Figs. 3 and 

4, the total-system critical Rayleigh number reaches 
an absolute maximum directly above the cross-over 
of individual-layer critical Rayleigh numbers. The 
maximum occurs at AT,,, = 25 K in Fig. 3 and at 
i = -0.12 in Fig. 4. For the triple-air-layer case in 
Fig. 5, the maximum in total system critical Rayleigh 
number is shifted to a value of i = 0.47, lower than 
the cross-over of individual-layer critical Rayleigh 
numbers at 1 = 0.54. 

The location of the maximum value of total-system 
critical Rayleigh number in Figs. 3, 4, and 5 can be 
understood by considering the condition of maximum 
stability for multi-layer stacks : maximum stability 
occurs in a multi-layer system when all individual 
layers reach the onset of instability simultaneously. 
The proof of this condition follows simply. Any con- 
vective motion within an unstable layer will create 
horizontal temperature gradients which will drive 
instabilities in neighboring fluid layers. Therefore, the 
total multi-layer system is only as stable as its least 
stable individual layer. Instability in a multi-layer sys- 
tem can be delayed by increasing the stability of less 
stable layers at the expense of decreasing the stability 
of more stable layers, until all layers become unstable 
simultaneously. Increasing the stability of a less stable 
layer can be accomplished, for example, by decreasing 
its thickness while correspondingly increasing the 
thickness of the more stable layers. (Note that varying 
i in Figs. 4 and 5 produces this result. One individual 
layer’s thickness is changed at the expense of the other 
individual layers’ thicknesses while total-system thick- 
ness remains unchanged.) 

The stability of an individual fluid layer is deter- 
mined by the layer’s thermal boundary conditions. It 
has previously been shown by Richards and Edwards 
[ 121 that the two thermal boundary conditions for any 
fluid layer can be characterized by two modified Biot 
numbers which account for both boundary con- 
duction and radiation. The critical Rayleigh number 
and therefore the stability of a single layer increases 
monotonically as the Biot numbers characterizing 
either boundary increase. 

Individual layers in a multi-layer system with equal 
Biot number boundaries will be equally stable and, in 
the absence of outside disturbances, will reach the 
onset of instability at equal critical Rayleigh numbers. 
Therefore, for a multi-layer system in which all indi- 
vidual layers have equal Biot-number boundaries, the 
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condition of maximum stability implies that the total 
system will be most stable when all of the individual- 
layer critical Rayleigh numbers are equal (Ru,,,, = 
Ra,,,, for all i and j). Figures 3 and 4 exemplify 
this point. Each of the double-layer systems used to 
construct the figures are composed of individual lay- 
ers with symmetric thermal boundary conditions 
(Bi,,,,, = 1, KU,,, -+ co). The two layers in each sys- 
tem are equally stable, and consequently the point 
of maximum system stability occurs at the cross-over 
of individual-layer critical Rayleigh numbers. 

In contrast, in a multi-layer system with individual 
fluid layers characterized by unequal Biot numbers, 
the individual layers will not be equally stable. The 
condition of maximum stability implies that the total 
system will be most stable when the individual-layer 
critical Rayleigh numbers are not equal. Maximum 
system stability will occur when the more stable indi- 
vidual layers with high-Biot-number boundaries have 
higher critical Rayleigh numbers than the less stable 
layers with low-Biot-number boundaries. This 
behavior can be seen in the triple-layer system of Fig. 
5. The two outer fluid layers, layers one and three, are 
symmetric, each with one high- and one low-Biot- 
number boundary (Bi ,“,, er = 1, Bi,,,,, --t m). The inner 
fluid layer, layer two, has two low-Biot-number 
boundaries (Bi,,, z 1, Bibotto,,, z 1). The inner fluid 
layer is consequently the least stable of the three 
layers. Maximum system stability will therefore occur 
when the critical Rayleigh number for layer two is 
smaller than the critical Rayleigh numbers for layers 
one and three (Ra,,,, < Ra,,, , N Ra,,,,). Fig. 5 con- 
firms this assertion. 

SUMMARY 

A linear perturbation analysis accounting for 
boundary radiation has been applied to the problem 
of thermal stability in a multi-layer stack. Heat-flux 
measurements in single, double, and triple air layers 
using a guard heated calorimeter confirm the results 
of the theory. Measured critical Rayleigh numbers 
agree with theoretical predictions to within 4% for 
eight out of the nine test cases run. Major conclusions 
of the study are : 

Both radiative coupling to intermediate barriers 
and horizontal conduction in the barriers act to 
stabilize multi-layer systems. 
Radiative coupling and fluid-property temperature 
dependence, in general. cause the colder layers 
higher up in a multi-layer stack to shift to higher 
Rayleigh numbers than lower and hotter layers of 
equal thickness. Radiation heat transfer may also 
cause the temperatures of high-emissivity inter- 
mediate barriers to shift toward one another. caus- 
ing the Rayleigh numbers for the layers between 
those barriers to decrease. 
The most stable configuration for a multi-layer stack 
occurs when ail individual layers reach the onset 

of instability simultaneously. In multi-layer systems 
made up of individual fluid layers characterized by 
equal Biot numbers, maximum stability occurs 
when the individual-layer critical Rayleigh numbers 
are equal. In multi-layer systems made up of indi- 
vidual layers characterized by unequal Biot 
numbers, maximum system stability occurs when 
the more stable (high-Biot-number) layers have 
larger individual-layer critical Rayleigh numbers 
than the less stable (low-Biot-number) layers. 
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